APPARENT NON-COINCIDENT COUPLING OF THE MISSOURI RIVER TRUNK SYSTEM DUE TO MID-CONTINENT CLIMATE CHANGE
Adams, A., Dubose, M., Woodworth, D., and Holbrook, J., School of Geology, Energy, and the Environment, Texas Christian University, Fort Worth, TX 76129

Abstract

Research on the Missouri River floodplain is funded through the USDA-SCS program (2001–Present) and the National Science Foundation (2008–2013), with additional guidance from efforts sponsored by the University of South Dakota and Missouri Natural Resources. This research investigates the long-term changes in stream channels and landscapes that have occurred as a result of significant climate change. The Missouri River floodplain is an example of a dynamic landscape that has been shaped by both natural and human-induced processes. This study aims to understand the role of climate change in the development of the Missouri River floodplain and its potential implications for future landscape evolution.

Problem

Previous studies have shown that the Missouri River floodplain is a dynamic landscape that has been shaped by both natural and human-induced processes. The study seeks to understand the role of climate change in the development of the Missouri River floodplain and its potential implications for future landscape evolution.

Methodology

Spatial data, maps, and models are defined based on the current study of Missouri River floodplain evolution. The maps show the effects of climate change on the Missouri River floodplain, including the changes in channel width and meander characteristics. The study also examines the role of human-induced processes, such as agriculture and urbanization, in shaping the landscape.

Current Results

The Missouri River floodplain is a dynamic landscape that has been shaped by both natural and human-induced processes. The study shows that climate change has had a significant impact on the landscape, with changes in channel width and meander characteristics observed. The study also examines the role of human-induced processes, such as agriculture and urbanization, in shaping the landscape.

Conclusions

The Missouri River floodplain is a dynamic landscape that has been shaped by both natural and human-induced processes. The study shows that climate change has had a significant impact on the landscape, with changes in channel width and meander characteristics observed. The study also examines the role of human-induced processes, such as agriculture and urbanization, in shaping the landscape.